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Abstract-Using the slender inclusion model developed earlier the elastostatic interaction problem between a
penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets
of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric
circles the problem is reduced to a system of singular integral equations. Techniques for the regularization
and for the numerical solution of the system are outlined. For various fiber geometries numerical examples
are given and distribution of the stress intensity factor along the crack border is obtained. Sample results
showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included.

1. INTRODUCTION

The general problem of an elastic matrix containing a penny-shaped crack and reinforced by
filaments of finite length was introduced in [1] and [2]. In this problem the external loads were
applied to the matrix at "infinity" and there were severe stress concentrations around the end
points of the filaments, meaning that the load transfer from the matrix to the filaments took place
mainly around the ends of the filaments. On the other hand, if the medium containing the crack is
a fiber-reinforced composite with fibers extending into the loading grips, outside the stress
perturbation zone of the crack the fiber-matrix interface shear will be zero. In this case the region
of load transfer between the fiber and the matrix will be restricted to the neighborhood of the
crack (approximately four crack diameters along the fiber), and the nature of the governing
integral equations will be somewhat different than that of the filament problem.

In this paper the problem of a fiber-reinforced elastic matrix containing a penny-shaped crack
will be formulated and solved under certain simplifying assumptions regarding the geometry of
the medium. The main assumptions are (a) the crack is a plane circular (penny-shaped) internal
crack; (b) the fibers are circular elastic cylinders which are perfectly bonded to the matrix, are
oriented perpendicular to the plane of the crack, and are symmetrically distributed on circles
concentric with the crack; (c) the composite system is loaded perpendicular to and away from the
crack; (d) the fiber diameter is relatively small compared to other lateral dimensions so that the
assumption of local axisymmetry in fiber stresses in considering the fiber-matrix displacement
compatibility and the use of the filament model developed in [1] are justified; and (e) the
Poisson's ratios of the matrix and the fiber are equal so that the reinforcing fiber may be replaced
by an auxiliary inclusion having the elastic constants Ef - E and v and by a layer of body
forces [1], where E, v are the elastic constants of the matrix and Ef is the Young's modulus of the
fibers. The technique developed in the paper is quite straightforward and may easily be applied to
any number of fiber systems each distributed symmetrically around the crack. As the results
indicate, when the number of fibers is increased the stress state around the leading edge of the
crack approaches an axisymmetric one. Thus reformulating the problem as an axisymmetric one,
substantial simplification in the solution can be achieved.

2. FORMULATION OF THE PROBLEM

First we consider a simple set of fibers distributed symmetrically around the crack as shown
in Fig. 1. As in [2] the unknown function in the problem is the layer of body forces Z(z)
imbedded on the fiber-matrix interface which can be obtained from the displacement or strain
continuity condition along the interface. If Z(z) is the layer of body forces acting on the matrix
then the cylindrical auxiliary fiber of infinite length is subjected to axial surface tractions of
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1315



1316 T. V. NARAYANAN and F. ERDOGAN

(o)

rTO

,....- I

z Ef

vY

r X xIX..-/

b
---- --- E,JI

" - --'-.:: :
tcro

(b)

Fig. 1. Geometry for the penny-shaped crack in an elastic matrix reinforced by symmetrically located elastic
fibers.

magnitude -Z(z). Assuming a fixed-grip type of loading at infinity the equilibrium condition of
the auxiliary fiber gives

2 Ef - E (00 2 f
1Tro UO-

E
- 21Tro Jz Z(t) dt -1Tro U (z) = 0 (1)

where ro is the fiber radius, Uo the stress acting on the matrix at z = +00, u f the stress acting on the
auxiliary fiber, and E and Ef the moduli of the fiber and the matrix, respectively. From (1) the
strain of the auxiliary fiber may be expressed as

(2)

The strain in the matrix €zm may be obtained from the superposition of the solutions of four
problems shown in Fig. 2. Thus, the integral equation for Z may be obtained by writing

(3)

Similar to the derivation given in [2], the strains €,", ... , €,d may be expressed as (Figs. 1 and 2)

€," = uo/E, (4)

€,"(z) =E~J-~ [t 2z +k(z,t)]Z(t)dt, (-oo<z<oo),

ke(z, t) = 2ro E(k) - I +-l2ro- po +2r01'(t3- z )[2E(k) K (k)]
po t - z po t - z po

(5)

~ I ( 31'(t _Z)2 )
+1Tro(t-z)~[di2+(t_z)2]3/2 1-21'+ di2+(t-Z)2 ,

l' = 1/(3 -4v), C, = 41T(l- v)/[(l + v)(3 -4v)],

k=2rolpo, p02=4r02+(t-z)2,
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Fig. 2. Superposition for the stresses and displacements in the matrix.

[ (
27r(i -1))JI/2 .

di = b 2 1- cos N ' (I = 2, ... , N)

Ezb(r, z) = - 1; V(2/'7T)1/2 UO[(1- 2v)Fo(r, Izl) +IzIGo(r, Izl)],

(Iz 12: 0), (6)

d _ 1+ v / 1/2 ~ b ( N )*
Ez (r,8,z)--p(2'7T) ;20 an nCOS n 8

*[(1- 2v)Fn(r, Izl) + IzIGn(r, Izl)], (IZI2: 0).

Fn(r, Z) = L~ sI/2JnN(rS)JnN+3/2(S)e-SZ ds, (Z >0; n = 1,2, )

Gn(r, z) = L~ s3/2JnN(rs)JnN+3/2(s)e-SZ ds, (z > 0, n = 0,1,2, )

=r2nN f (2nN+l) (-lr-
k

an k~O k 2n-2k+l'

1 La L2rrbo = -2 P (r, 8)r dr d8,
'7Ta 0 0

2( N + 1) La L2rr ( )nN+lbn = n p(r,8)!... cos(nN8)drd8,
'7Ta 0 0 a

ro J~ N 1 ( 3t
2

)p(r,8)=4(1_) Z(t)dt L -3 1-2V+-2 dt,
v -~ m~1 pm pm

2 2 (2'7Tm) b2 2pm = r - 2br COS 8 - N + + t

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

where a is the radius of the crack which, in this paper, is assumed to be the length unit, K(k) and
E (k) are the complete elliptic integrals, N is the number of the equally spaced fibers around the
crack, b is the distance of the fibers from the crack center (Fig. 1), and (r, 8, z) are the cylindrical
coordinates shown in Fig. 1, 8 = 0 corresponding to fiber 1.

Substituting now from (2) and (4)-(7) into (3) with r = band 8 = 0 we find an integral equation
of the following form to determine the unknown function Z(z):
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L~ ~~t; dt +L~ k(z, t)Z(t) dt = [(z), (-00 < z < (0), (15)

where [(z) is a known function and the known kernel k(z, t) has an additional logarithmic
singularity. After determining the body force distribution Z(z), it was shown in [1] that the
quantities of more physical interest, namely the interface shear as and the total fiber stress af
may be obtained from

Efas(z) = - E
f

_ E Z(z), (-00 < z < (0),

af(z) = af(z)+azm(z), (-00< z <(0)

(16)

(17)

where a f is the stress in the auxiliary fiber and am in the matrix. The matrix stress is obtained
from the superposition shown in Fig. 2. Thus,

(18)

where

a/ (b, z) = - (2/1T )1/2 L anbn[Fn (b, Iz I) + Iz IGn (b, Iz I)].
o

(19)

(20)

(21)

Other quantities of physical interest are the crack opening displacement uz (r, e, +0) and the
stress intensity factor along the leading edge of the crack. Referring to [2] and Fig. 2 Uz may be
expressed as

Uz (r, e, +0) = u/ (r, +0) + uz
d (r, e, +0)

2(1 - v
2
) / 1/2[ ~ b (N H ( 0]= E (21T) aoHo(r, 0)+ ~o an n cos n e) n r, ) ,

(0~r<I,0~e<21T), (22)

where

(23)

From (see [3])

Fig. 3. Geometry of the multiple set of fibers; M is the number of concentric rings containing the fibers; in each
ring the fibers are equally spaced with a, = 21rINJ,Nj being the number of fibers in the jthring.
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we obtain

(0::; r < 1), (24)

4(1- v
2
) 2)1/2[ ~ b nN (N )]uz(r, 0, +0) = TTE (1- r 0"0+ .:'20 an n r cos nO,

(0::; r < 1, 0::; 0 < 27T). (25)

Using now the definition of the stress intensity factor as

E a
= -lim

2
(l 2)V2(1- r)-;-uzm(r, 0, +0),

r_l - V ur

we find

(26)

(27)

Note that because of symmetry the forward and anti-plane shear components of the stress
intensity factor (k 2 and k3) will be zero.

3. MULTIPLE SETS OF FIBERS

The analysis developed for a single set of fibers may easily be extended to multiple sets
distributed with equal angular spacings on concentric rings around the penny-shaped crack.
Consider the geometry given in Fig. 3 and again let the fibers be oriented perpendicular to the
plane of the crack. Let M be the number of concentric rings carrying the fibers, bj, (j = 1, ... , M)
the radius of the jth ring, Nj , (j = 1, ..., M) the number of the fibers on the jth ring,t and rj and
Ej, (j = I, ... , M) the radius and the Young's modulus of the fibers in the jth set. The unknown
functions will now be the layers of body forces Zj (z), (j = 1, ..., M) imbedded in the fiber-matrix
interfaces and the strain continuity conditions expressed for a representative fiber in each set will
give the necessary system of integral equations to determine these functions. Thus, in this case
(dropping the sUbscript z) the condition (3) is modified to read

4 (z) = et (bj, OJ, z) = e a (z ) + e b (bj, z) +e{ (bj , OJ, z)

+e/(bj,Oj,z), (j=I, ... ,M;-<Xl<z<oo) (28)

where OJ is the angular orientation of the representative fiber in the jth set. The strain in the
auxiliary fiber, 4 may be obtained from (2) by replacing e/, Ef, and Z by e/, Ej, and Zj,

respectively. Referring to Figs. 2 and 3, it is clear that in the superposition the axisymmetric
strain components in the matrix e a and e b (which depend only on 0"0) will be the same as that
found for the single set of fibers in the previous section and are given by (4) and (6).

Referring again to Figs. 3 and 2c, if we let the axial strain in the matrix at a location of a
representative fiber from the jth set (i.e., at r = bj , 0 = OJ) due to all the body forces Z(z)
imbedded in the fiber-matrix interfaces on the i th ring be e ~(bj, OJ, z), the third term in (28)
becomes

M

e{(bj, OJ, z) = L efj(bj, OJ, z), (j = I, ... , M; -<Xl < Z < (0).
i=1

(29)

tHere it is assumed that the numbers Nj are either equal or multiples of each other and the fibers are distributed in such a
way that the body forces (or the fiber stresses) in each set is the same. Otherwise, any deviation from symmetry will cause the
fiber stresses in a given set to be different and the total number of unknown functions to be much greater than the number of
sets M.
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M

Ejd(bj, OJ, z) =L E~(bj, OJ, z), (j = 1, ..., M; -oc < Z < (0)
i=l

(30)

where E f; is obtained from (7)-(14) by replacing E ~z, a", b", N, r, 0 in (7)-(9) by E f;, ajm bj", Nj, bj, OJ ;
bo, p, b", N, ro, Z in (11)-(13) by bjo, Pj, bj", Nj, rj, Zj ; b, 0, N in (14) by bj, 0 - OJ, Nj, and cos (nNO)
in (12) by cos [nNj(O - OJ)]. Note that E1, and Ef; are dependent on Zi(Z) only.

To evaluate Et the interaction of two different fibers at two arbitrary locations has to be
established. We first observe that E~ which appears in (29) is given by (5). For this all one needs to
do is to replace E/, b, Z, N, po, and ro in (5) by Eli, bj, Zj, Nj, pj and rj, respectively. Referring now
to Figs. 3 and 2c and the basic concentrated load solution [1,4], the axial strain at the point r = bj ,

(J = OJ, Z due to Ni line loads 21TrZi(t), acting along r = bi, 0 = (Jim = 0, + (21Tm!N;), Z = t,
(m = 1, ... , N i , -00 < t < (0) may be expressed as

where

If we now substitute (with the necessary change in notation) from (2), (4), (6), (29)-(31) into (28)
we obtain a system of singular integral equations of the following form for unknown functions
Z., ...,ZM:

1 J'" Zj(t) J'" MEel ~'" t - z dt + _'" ~ kji(z, t)Z;(t) dt = h(Z),

(j=I, ... ,M;-oo<z<oo). (32)

where fj and kji , (i,j = 1, ... , M) are known functions. After solving (32) the interface shear
stresses, the fiber stresses, the crack surface displacement, and the stress intensity factor may be
obtained from expressions similar to (16), (17), (with (18)-(21)), (25) and (27). For example, the
stress intensity factor may be expressed as

k.(O) = (2!1T){ 0'0+~ ~o aj"bj" cos [nNj(O - OJ)]},

(0:50 <21T) (33)

where aj" and bj" are obtained from (10)-(13) by replacing a", b", N, p, b, e, Z, ro by aj", bj", Nj, Pj,
hj , e- OJ, Zj, rj, respectively.

4. ON THE SOLUTION OF INTEGRAL EQUATIONS

The integral eqns (15) and (32) represent special cases of the following more general system:

Ag(x)+~L~ tg~t~dt+ L~ K(x,t)g(t)dt=f(x), (-oo<x<oo), (34)

A = (aid, B = (b jj ), g(x) = (gi(X»,

K(x,t)=(kj(x,t», f(x) = (f,(x»), (i,j = 1, ... ,n),

where the matrices A and B are constant and are such that A + B and A - Bare nonsingular, the
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known functions f; and kij and the unknown functions gi may be complex, and the kernels k,j

satisfy the necessary regularity conditions at infinity. The system of singular integral eqns (34)
may formally be regularized as follows: Define the following holomorphic functions:

G(Z)=~f= g(t) dt, Z =x +iy,
211'/ -00 t - Z

{
G(Z), uS+

H(z) = (A + Br1(A - B)G(z), uS-,

G(z) = (Gj(z», H(z) = (Hj(z», (j = 1, ... , n),

(A - B)-l = C = (Cij), (A + 1)-1 D = (did.

In terms of the sectionally holomorphic functions Hj(z) (34) may be expressed as

The solution of (37) is (5]

H(Z)=2
D

.fOO [f(S)-f
oo

K(s,t)g(t)dt] ~ +P(z),
7T1 -00 -00 S Z

(35)

(36)

(37)

(38)

where P(z) = (Pj(z», (j = 1, ..., n) is an arbitrary (matrix) polynomial which must be identically
zero because of the condition that G(z)-.O for Izl-'oo. The solution of (34) may then be
expressed as

giving

where

g(x)+ L~ M(x,t)g(t)dt=p(x), (-00< X <00)

D - Cfoo K(s, t)
M(x, t) = (mjk(X, t» = (D + C)K(x, t)+-2-' --ds,

7T1 _00 s - x

D+C D-Cf= f(s)
P(x) = (Pj (x» =-2- f(x) +-2-' --ds,

7T1 -00 S - x

(j,k = 1, ... , n).

(39)

(40)

(41a,b)

It should be emphasized that the objective of the regularization process is "smoothing" the
kernels. Thus the system of singular integral eqns (34) is reduced to that of Fredholm integral
equations given by (40). It is seen that if (34) consists of its dominant part only, Le. if K (x, t) = 0,
then (40) and (41b) give the solution in closed form. If K is not zero and the integral in (40) is one
of the standard convolution types (see, e.g. [6]) the solution of (40) may again be obtained in
closed form. Otherwise (40) may have to be solved numerically.

From the view point of numerical analysis the procedure outlined here which leads to (40)
would be very appropriate and convenient provided the kernels mij can be evaluated in closed
form. If these kernels too have to be evaluated numerically from the singular integrals given by
(41a), the technique could be quite laborious. In this case the following simpler and more direct
approach may be preferable: Noting that

eqn (34) may be expressed as

fOO dt
-- = 0, (-00 < x < (0)

-00 t - x (42)
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Ag(x)+~ L~ g(ti=:(X) dt +L~ K(x, t)g(t)dt

=f(x), (-00< X <00). (43)

It should be pointed out that because of the nature of the related physical problems, unlike the
solution of the singular integral equations defined on non-intersecting smooth arcs, the solution of
singular integral equations defined on infinite lines and smooth closed contours are usually
bounded and continuous functions. Hence, for the purpose of numerical analysis, in the latter
type equations the singularity of the kernel can always be removed as in (43) and the resulting
system can be treated as ordinary Fredholm integral equations. Note that in (43) for t x the
integrand in the second term becomes the derivative of g (t) at x which is assumed to be bounded.

In solving (43) one may still encounter numerical difficulties because of the fact that the
support of the integral equations is infinite. To overcome this usually a simple change in variables
such as the following would be sufficient:

7Tr 7TS
t =tan T' x = tan T' (-00 < (t, x) < 00, -I < (r, s) < 1). (44)

Also, to improve the effectiveness of the numerical solution, it is preferable to use a
Gaussian-type integration formula rather than one based on dividing the domain into equal
sub-intervals. In the type of problems under consideration an appropriate integration formula
would be the following Gauss-Legendre formula:

(45)

where

After making the transformation (44), (43) becomes

A +!if' g,(r)-g,(s) dr
gl(S) 7Ti _, tan (7Tr /2) - tan (7TS /2) cos2 (7Tr{2)

f' dr+ K,(s,r)g,(r) 2( /2)=f,(s), (-l<x<l)-, cos 7Tr
(46)

where gl(S) = g(tan 7Ts{2), etc. First it may be noted that the regularity condition of the problem
requires K(x, t) to decay sufficiently fast so that the second integral in (46) is convergent. Hence,
the application of (45) to this integral will be straightforward. Unlike the Gauss-Chebyshev
integration formulas, in the application of Gauss-Legendre formula to the solution of integral
equations, both variables s. and rj are taken to be the roots of the same polynominal, i.e.

(47)

this means that at i = j the second integral in (46) may need some care. Observing that

r g,(r)- g,(s)
}~ [tan (7Tr/2) - tan (7TS /2)]cos2 (7Tr/2)

2 dg,(r)
7T~'

this difficulty may easily be circumvented by replacing the integrand in the second term for i = j
by

.1 gl(ri+l) - gl(r.-t)
7T r.+l - r.-l



Penny-shaped crack in a fiber-reinforced matrix 1323

Thus, writing (46) at n locations Si one obtains a system of n (matrix) equations for the unknowns
gl(Si), (i = 1, ... , n).

5. NUMERICAL RESULTS

Figures 4-13 show some of calculated resultst. Figure 4 shows a typical result giving the body
force distribution Z(z) for a single fiber, (i.e. N = 1) obtained from (15). Note that because of
symmetry with respect to z = 0 plane Z is an odd and the fiber stress (J'f is an even function of z.
A sample result giving the distribution of the stress intensity factor along the crack border for
various values of N, the number of fibers in a single set is shown in Fig. 5. As in the case of
filament reinforcements, as N increases the £i-dependence of the stress intensity factor
decreases. Hence, for large values of N, for the purpose of analyzing the effect of the fiber

tFurther results and the details of the analysis may be found in [7J.
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Fig. 4. Distribution of body force Z(z) for Ef = 130E, v =0'35,'0 =0·\5a, and (--): b = \'375a, (----):
b = \·50a,(-.-.-): b = \·75a.

1.00 - -----------------

k,

2(7"0.;aITr
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o 0.5
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Fig. 5. Effect of the number of fibers N on the stress intensity factor distribution along the crack border;
b = I·375a,'o = 0·15a, v = O· 35, Ef = 130E.
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Fig. 6. Effect of the fiber distance b on the stress intensity factor for the axisymmetric case; N = 16, '0 = O'la,
Ef = 130E, v = 0·35.
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Fig. 7. Angular variation of the stress intensity factor for reinforcement by two fibers; b. = 1·4a, b, = 1·5a,
8. = 0, 82= 0·41l', E. = E, 130E, v = O'35, '. " = '0, and (--): '0 = 0'15a, (----): '0 = 0·20a, (-.-.-):

'0 = 0·30a.

1.00

o 0.5
8N/2.".

10

Fig. 8. Angular variation of the stress intensity factor tor two sets of reinforcing fibers; b, = 1'4a, b, = 1·5a,
8,=0,8,=1l'/4,E,=E2 130E,v =0'35,"= ,,=0'2a,N, =N, N.

reinforcement on the stress intensity factor, one may treat the problem as being axisymmetric.
This may be done by assuming that the matrix is reinforced by a cylindrical membrane having the
same modules Ef as the fibers and an equivalent cross-sectional area (Le. N7Tro2). Figure 6 shows
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Fig. 9. Distribution of body forces for reinforcement by two fibers; b, 1·5a, b, = J·6a, " = '2 = 0·4a, Ii, = 0,
1i2 = 0·21T, E, = E2 = 15E.
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Fig. 10. Distribution of fiber stress Uf for reinforcement by two fibers; b, '" 1'5a, b2 '" 1'6a, " = r2 '" 0'4a,
Ii, =0,1i2 =0·2'lT,E, '" E2 J5E.
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0,90

° 0,05 0.15

Fig. II, Effect of fiber radius '0'" " = " on the stress intensity factor for reinforcement by two sets of fibers
obtained from the axisymmetric solution, N, '" N2 '" 8, b, = J·4a,b2 '" J'6a,E, '" E2 '" l30E, v =0-35.
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Ef/Em

Fig. 12. Effect of modulus ratio EtiE on the stress intensity factor for reinforcement by two sets of fibers
obtained from the axisymmetric solutions; E I ~ E2 ~ E/> v ~ 0·35, N I ~ N2 ~ 8, b l ~ 1·25a, b2 ~ 1'5a,

" ~'2 ~ O·la.

0.90

1.2 1.6 2.4

Fig. 13. Effect of fiber distance b2 on the stress intensity factor for reinforcement by two sets of fibers obtained
from the axisymmetric solution;NI ~ N2 ~ 8, £1 ~ £2 ~ l30E, v ~ 0·35, b l ~ !·25a,'1 ~'2 ~ O·!a.

the result of such an axisymmetric analysis where it is assumed that N = 16. It is seen that as the
(fiber) distance b increases, the effect of the reinforcement rapidly decreases,the stress intensity
factor ratio k l /(2aova/7T) approaching the value for the penny-shaped crack without
reinforcement. For smaller values of b as the crack border approaches the fibers the problem
cannot be treated as axisymmetric regardless of the number N. However, the membrane
reinforcement has a physical meaning. In this case when the crack touches the reinforcement the
power of stress singularity (see eqn (26)) becomes less than -1/2, and therefore the stress
intensity factor as defined by (26) would be expected to go to zero. This trend is clearly seen in
Fig. 6.

Figure 7 gives some idea about the reinforcement effect of two fibers placed in different
locations (bl = 1'4a, b2 = 1'5a, 0, = 0, O2 = 0·47T). In this and in the subsequent examples the two
sets of fibers are assumed to have equal radii (rl = r2 == ro) and stiffnesses (E, =E 2 == Ef ). The
effect of the number of fibers in each set is shown in Fig. 8 where it is assumed that b, = 1'4a,
b2 == 1'5a, N, == N2 == N, r, = r2 == 0'2a, Ef == 130E, and 01 == 0, O2 = 7T/4. It is seen that as N
increases the O-dependence as well as the magnitude of the stress intensity factor again
decreases. Typical results giving the distribution of the body forces Z" Z2 and fiber stresses a'f
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and (hj for the two fibers are shown in Figs. 9 and 10. Ej = 15E used in these figures
approximately correspond to steel-concrete combination. Note that at distances beyond a few
crack radii Z1 and Z2 die out quite rapidly and alj and a2j approach the value of aoEj IE
corresponding to the fiber stress in uncracked reinforced matrix.

In the case of multiple set of fibers too for large values of N i the problem may be treated as
axisymmetric by replacing the individual sets of fibers by equivalent elastic cylindrical
membranes. Figures 11-13 show some of the results obtained under this assumption for two sets
of fibers. In these examples the membranes are assumed to be equivalent to 8 fibers in each set.
Figure 11 shows the effect of the fiber radius 'I = '2 = '0 and Fig. 12 shows the effect of the
modulus ratio Ej lEon the stress intensity factor which is seen to decrease with both increasing
'0 and increasing Ei IE. Fig. 13 shows the effect of the fiber distance b2 for a fixed b1 on the stress
intensity factor k\. The asymptote shown by the dashed line is the stress intensity factor
corresponding to a single set of fibers at b ,. It is seen that k 1 rapidly approaches this asymptotic
value as b2 increases. This implies that the sets of fibers which may exist in the composite beyond
a certain distance from the crack would have only a negligible effect on the stress intensity factor.
The figure also shows that as b2 decreases the reduction in the stress intensity factor, k l becomes
more significant and again k1 would approach zero as the distance from the crack front to the
reinforcing membrane goes to zero.

Comparing the results obtained in this paper for the reinforcing fibers with that found in [2]
for finite filaments it may be remarked that there is considerable qualitative similarity regarding
the distribution of the stress intensity factor. However, in the filament case the interface shear (or
the body force Z) is concentrated around the filament ends and generaJly gives rise to filament
stresses which are higher than the stresses found in the fibers. As a result the reinforcement effect
(measured by the reduction in the stress intensity factor) of the filaments is relatively higher than
that of the comparably distributed fibers.
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